

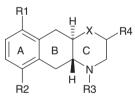
Short Research Article

Labeling strategies of selected subtypes of the hexahydronaphth[2,3-b]-1,4-oxazine- and octahydrobenzo[g]quinoline-type[†]

THOMAS MOENIUS^{1,*}, HENDRIK ANDRES¹, JOACHIM NOZULAK², RHYS SALTER¹, TAPAN RAY³, PAUL BURTSCHER¹, PETER SCHNELLI¹, CHRISTOPH ZÜGER¹ and ROLF VOGES¹

¹Novartis Pharma, DMPK(EU)-IL, Hueninger Street, CH-4002 Basel, Switzerland

²Novartis Pharma NIBR, Hueninger Street, CH-4002 Basel, Switzerland


 3 Novartis Pharma, DMPK(US)-IL, One Health Plaza, East Hanover, NJ 07936, USA

Received 29 August 2006; Revised 22 February 2007; Accepted 27 February 2007

Keywords: Labeling; Quinoline-type; Schwartz' reagent

Introduction

A class of compounds characterized by the structure below showed therapeutic value in the treatment of CNS disorders.^{1a,1b,1c} Some selected candidates demonstrated that a variety of labeling strategies needed to be developed in order to meet particular requirements of specific activity, position of label, metabolic stability and starting material.

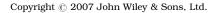
Results and discussion

Strategy A: Formation of the ring C starting from $[^{14}C]$ chloroacetyl chloride (Scheme 1).

Strategy B: Tritiation of an unsaturated precursor (Scheme 2).

Strategy C: Reduction of β -keto ester with Cp₂ZrCl³H (Schwartz's reagent)^{2a,2b} (Scheme 3).

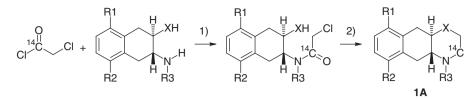
Since the stereochemistry of the ³H-label is governed by the reduction of the double bond, reduction with T_2 (Strategy B) and reduction with H_2 (Strategy C) produce complementary isotopomers (**2B** versus **3B**).

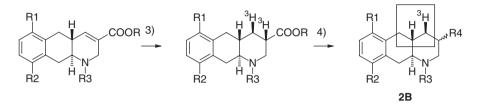

Strategy D: C-14,C-13,H-2-Labeling of **4B/C** by selective degradation/resynthesis approach (Scheme 4).

In this specific case the $-\mathrm{Si-CH}_3$ (as well as the $O\mathrm{-CH}_3$ and the $N\mathrm{-CH}_3)$ moiety was found to be

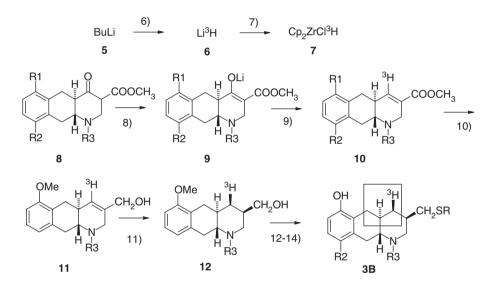
Туре	No.	R^1	\mathbb{R}^2	R^3	R^4	Х	Label
I II [*] III IV	1A 2B 3B 4A 4B 4C	-SCH ₃ -OH -OH -Si(CH ₃) ₃ -Si(¹³ CD ₃)(CH ₃) ₂ -Si(¹⁴ CH ₃)(CH ₃) ₂	-OCH ₃ -H -H -OCH ₃	-CH ₃ -C ₃ H ₇ -CH ₃ -CH ₃	-H -NHSO ₂ NEt ₂ -CH ₂ -S-R -H	-0 -CH ₂ -CH ₂ -CH ₂	C-14 H-3 H-3 C-14 (ring) C-13,H-2 C-14

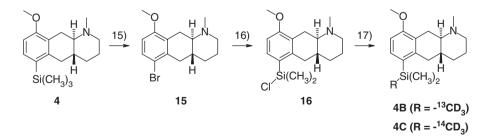
*Antipode of the structure given above.


[†]Proceedings of the Ninth International Symposium on the Synthesis and Applications of Isotopically Labelled Compounds, Edinburgh, 16–20 July 2006.

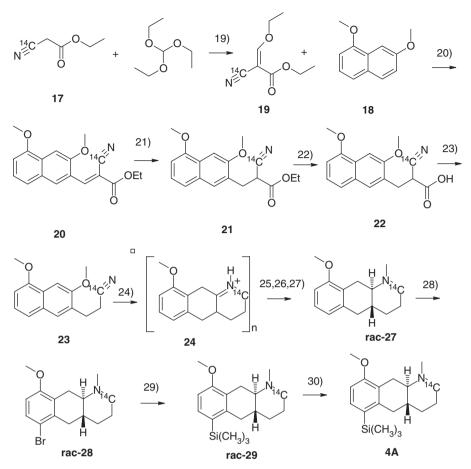


^{*}Correspondence to: Thomas Moenius, Novartis Pharma, DMPK(EU)-IL, Hueninger Street, CH-4002 Basel, Switzerland. E-mail: thomas. moenius@novartis.com


LABELING STRATEGIES OF SELECTED SUBTYPES 617


Scheme 1 Reaction conditions: (1) NEt₃, CH₂Cl₂, 25°C, 16h; (2) NaH, Bu₄NI, THF, 25°C, 16h.

Scheme 2 Reaction conditions: (3) ³H₂, Raney-Ni, CH₃OH, 25°C, 1 h; (4) LDA, THF, -35°C, 0.5 h, H₂O, H⁺.



Scheme 3 Reaction conditions: (6) Cp_2Zr^3H : T_2 , *n*-BuLi, TMEDA, THF; (7) THF, Cp_2ZrCl_2 ; (8) LDA, THF; (9) **7**, THF, $-20^{\circ}C$; (10) LiAlH₄, THF, $-20^{\circ}C$, 1 h, $20^{\circ}C$; (11) H₂, Pd/C 10%, EtOH, 4 h, $20^{\circ}C$; (12) methanesulfonyl chloride, pyridine, 3 h, $20^{\circ}C$; (13) 2-mercapto-derivative in DMF, 4 N NaOH, DMF, 2 h, $20^{\circ}C$; (14) BBr₃ in CH₂Cl₂, 2 h, $20^{\circ}C$.

Scheme 4 Reaction conditions: (15a) 0.2 N HCl, 80°C, 95%, (b) Br_2 , CCl_4 , 58%; (16) *tert*-BuLi, THF, -78°C, 1 h, 0°C, $Cl_2Si(CH_3)_2$, 2 h (not isolated); (17) Synthesis of ${}^{13}C^2H_3Li$ (resp. ${}^{14}CH_3Li$): ${}^{13}C^2H_3I$ (resp. ${}^{14}CH_3I$), *tert*-BuLi (1.5 M in pentane), -78°C, Et_2O , 15 min, RT; addition, 52% (related to **15**).

Copyright © 2007 John Wiley & Sons, Ltd.

Scheme 5 Ring C C-14 labeling using a sequential, multi-step strategy. Reaction conditions: (19) acetic anhydride, 145°C, 5 h, flash-chromatography, 74%; (20), *n*-BuLi, THF, -20° C, -70° C, 1 h, -25° C, H_2 SO₄, not isolated; (21) Pd/C 5%, THF/EtOH, H₂, 25°C, 22 h, flash-chromatography, 46%; (22) NaOH, EtOH, 90°C, 3 h, 96%; (23) *N*,*N*-dimethylacetamide, NaCl, H₂O, 150°C, 2.5 h, not isolated; (24) Na-metal, *n*-butanol, 90°C, 3 h, HCl-H₂O, not isolated; (25) NaBH₄, *n*-butanol, EtOH, acetic acid, water, not isolated; (26) formaldehyde, NaCNBH₃, EtOH, 25°C, 0.5 h; (27) separation of the *cis/trans* isomers by flash-chromatography, 42% related to **22**; (28) HBr, HBrO₃, acetic acid/water 1:1, flash chromatography, 94%; (29) *n*-BuLi, trimethylsilyl chloride, THF, flash-chromatography, 88%; (30) separation of the antipodes by preparative HPLC-chromatography, 48%.

metabolically unstable and thus a strategy for ring-labeling had to be developed. $^{\rm 3}$

Strategy E: Ring C C-14 labeling using a sequential, multi-step strategy (Scheme 5).

Regio-, diastereo- and enantioselective challenges of this route are addressed using an optimized procedure.⁴ Key-steps are the regioselective *ortho*lithiation of **18** with subsequent Michael addition of the bulky acceptor **19** (step 20) and the simultaneous reduction of the methoxynaphthalene moiety and the nitrile function resulting in the cyclic enamine **24** (step 24). Final separation of the enantiomers was accomplished by chiral preparative HPLC-purification (step 30), however, larger quantities might be separated by recrystallization with (-)-*o*,*o*-ditoluoyl-L-tartaric acid.

Conclusion

Based on particular requirements a broad variety of strategies were applied to label the class of title compounds. Particularly, in those cases which provided the β -keto ester as starting material the introduction of the 3H-label by the 'tritio-zirconation' approach (Strategy 3) was most successful, resulting in isotopomers of high specific activity. Since the degradation/resynthesis approach of **4** provided labeling in a metabolically unstable position a total synthesis was inevitable. At a first glance the multistep-synthesis appeared undesirable, especially due to regio-, as well as diastereo- and enantioselective problems. However, taking advantage of the already

optimized procedures subsequent application to isotope-labeling was attractive.

REFERENCES

 (a) Renaud A, Nishino S, Dement WC, Guilleminault C, Mignot E. *Eur J Pharmacol* 1991; **205**: 11–16;
(b) Nozulak J, Vigouret JM, Jaton AL, Hofmann A, Dravid AR, Weber HP, Kalkmann HO, Walkinshaw MD. J Med Chem 1992; **35**: 480–489; (c) Eltze M, Boer R. Eur J Pharmacol 1992; **224**: 125–136.

- (a) Zippi EM, Andres H, Morimoto H, Williams PG. Synth Commun 1994; **24**(7): 1037; (b) Godfrey AG, Ganem B. Tetrahedron Lett 1992; **33**(49): 7461.
- 3. Wiegand HJ. Novartis Pharma internal communication, 2001.
- 4. Bänziger M, Küsters E, La Vecchia L, Marterer W, Nozulak J. *Org Process Res Dev* 2003; **7**: 904.